Water for energy production in Mongolia

Tomohiro Okadera¹ 1 National Institute for Environmental Studies

INTERNATIONAL WORKSHOP ON "ADAPTATION FOR CLIMATE CHANGE AND GREEN DEVELOPMENT IN MONGOLIA" Tokyo, Japan January 13-15, 2015

Outline

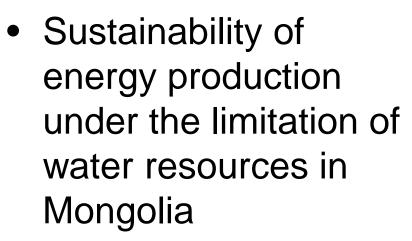
- Introduction
- Water for coal
- Water for electricity
- Impacts to water resources
- Conclusions
- Future tasks for adaptation and green development

Background

• Vulnerable water resources

- Low precipitation:87-324 mm (2010)
- Melting permafrost by climate change (Wu et al., 2012a; Wu et al., 2012b; Wu et al., 2013)
- Rapid economic growth
 - Annual GDP growth ration + 25% (2010)

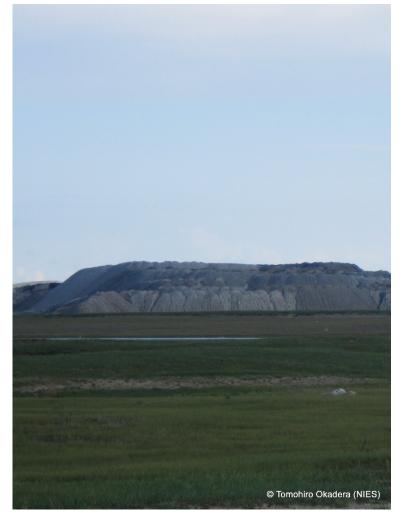
Coal Production


- 22% of industrial gross output
- Annual growth ratio: +115%

Power consumption

- Power generation +9%
- Import +68%
- Energy production requires much water (Gleick, 1994)

Issues

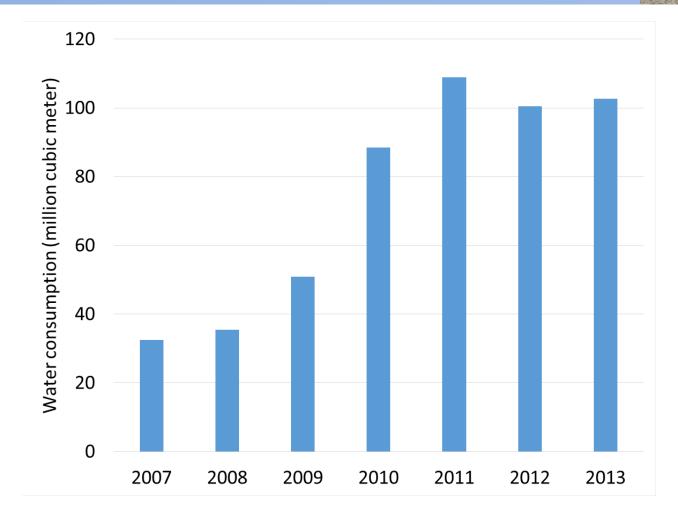


- How much water is required to produce coal and electricity?
- Impacts to water resources in Mongolia

Water for coal

Water for coal production

Production Process	Consumed water (m ³ /TJ)	
Surface mining (No vegetation)	2	
Surface mining (Revegetation)	5	
Underground mining	3–20	
Beneficiation	4	
Slurry pipeline	40–85	
Other plant operation	90	
Total	136–199	


(Gleick, 1994)

Calculation of water for coal production

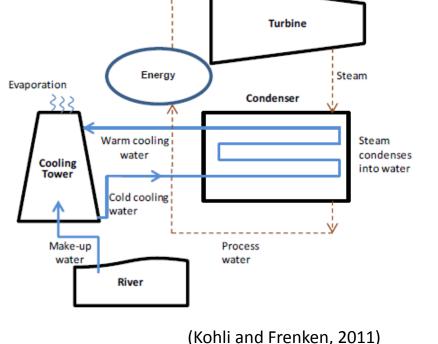
- Bottom-up approach
 - Coal production
 - Water consumption per coal production
- Amount of coal production (GJ)
 The balance of coal (NSOM, 2011; 2013)
- Water consumption per coal production
 0.17 m³/GJ (Gleick, 1994; Okadera et al., 2014)

Water consumption to produce coal in Mongolia

Water for electricity

Water for power generation

- Process water
 - Water drawn into hydropower plants
 - Steam of thermal plants (Dotted line)
- Cooling water
 - Water for cooling process water in thermal plants (blue line)

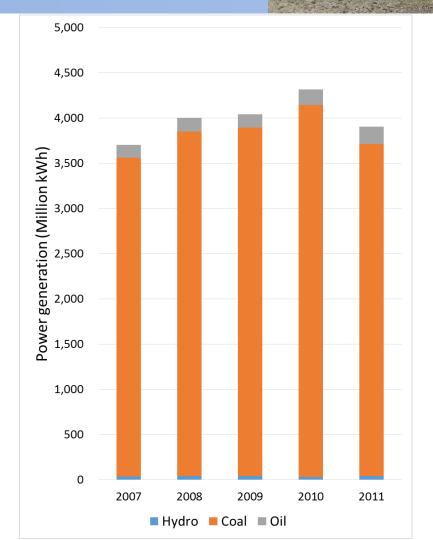


(Kohli and Frenken, 2011)

Indicator

Methods of water for electricity

- Water withdrawal
- Water consumption
- Bottom-up approach
 - Power generation (kWh)
 - Water use parameters for power generation (i.e. m³ / kWh)

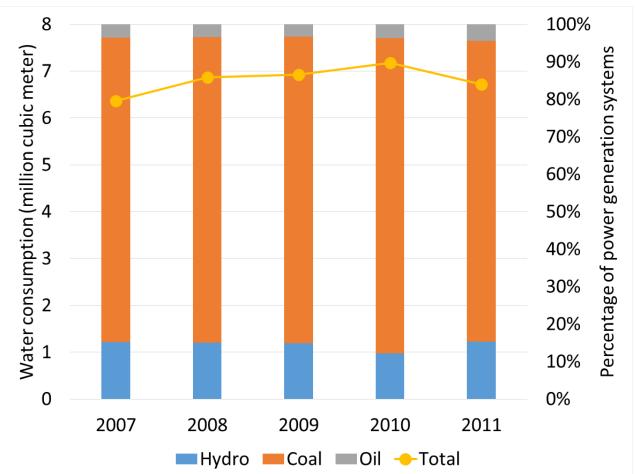


Steam_

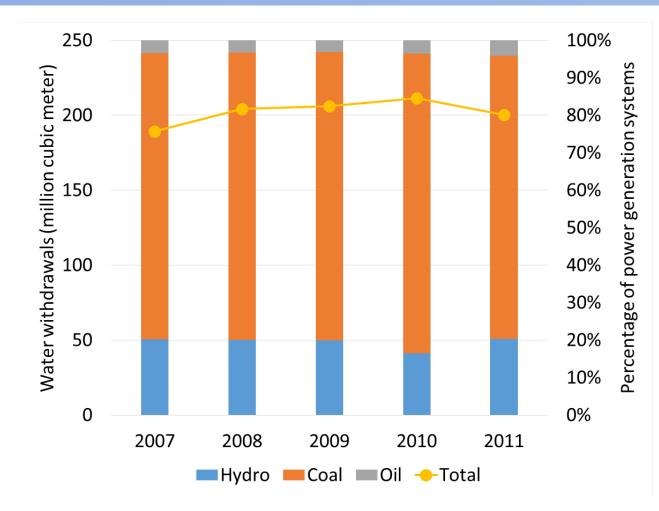
Data

- Domestic power generation
 - Electricity balance sheet (NSOM, 2011)
- Power generation by fuel
 - IEA statistic (IEA, 2014)
 - Hydro
 - Coal
 - Oil
- Water use parameters
 - Averaged value by literature reviews (Rio Carrillo and Frei, 2009; Gleick, 1994; Sovacool and Sovacool, 2009)
 - Water consumption per power generation (35 samples)
 - Water withdrawal per power generation (19 samples)

Water use parameter

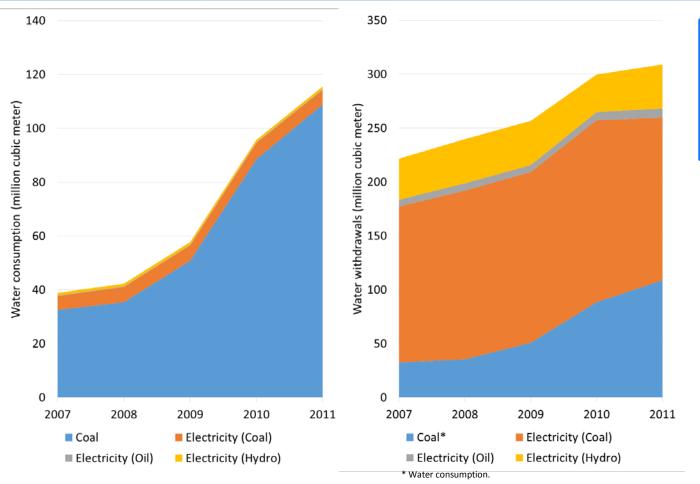

	Water consumption (m ³ /MWh)	Water withdrawal (m³/MWh)
Coal	1,469	41,088
Oil	1,557	44,310
Hydro	27,439	1,086,142

• Limitation


- The differences of cooling systems is not taken into account.
- Wind and photovoltaic is assumed as zero or negligible (Gleick, 1994; Rio Carrillo and Frei, 2009).

Water consumption of power generation in Mongolia

Water withdrawal of power generation


Industrial water withdrawal^{*} 238 million m³ (2009; FAO, 2014)

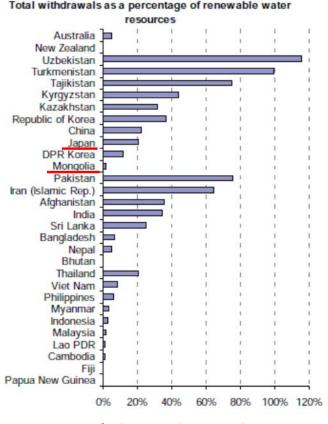
* It includes cooling water of thermoelectric plants, but it does not include hydropower.

- 69% of the industrial water is drawn by thermoelectric plants.
- Hydro additionally withdraws water corresponding to 17% of the industrial water.

Impact to water resource by energy production

Renewable water resources 34,800 million m³ (FAO, 2013)

6-9% of renewable water resources is withdrawn, while 1-3% of them is evaporated for energy production.


_

Conclusions

- Power generation has a great influence for industrial water withdrawals in Mongolia.
- Coal mining a main contributor to promote consumed water resources.
- The current impacts to water resources not so serious in the nation.
 - Low water exploitation

Water exploitation indices (WEI) in Asia-Pacific region

(Alexander and West, 2011)

Future tasks for adaptation and green development


• High potential to develop water resources

- Utilization of surface water
- Advantage to sustainable energy supply (i.e. hydro power plants)
- Increase energy demand
- "Regional" water availability and requirement
 - Regional water availability (i.e. WDI)
 - Controllable/usable water resources
 - Regional water requirements
 - 70% of power generation capacity is installed in Ulaanbaatar;
 - Coal is mainly produced in arid areas.
- Multiple trade-offs (co-benefits)
 - Water for energy production (i.e. power generation with saving water or without water)
 - Water for animal husbandry (food security) and grassland (CO₂ sequestration)
- Regional scientific database
 - Regional natural resources(i.e. renewable water resources, grassland)
 - Regional development level (i.e. infrastructures)
 - Verification (i.e. water use by power plants and coal mining)
- Water-based performance index for adaptation and green developments

Actual usage of renewable water resources in Mongolia

Renewable	Withdrawals		lc
water resources			15
32,700	92		
Ground water 6,100		448	
- 4,000			
34,800		540	
(FAO, 2014)		Industry	Municipal
		218	98
	water resources 32,700 6,100 - 4,000 34,800	Water resources 32,700 6,100 - 4,000 34,800 Agriculture	water resources Withdrawa 32,700 92 6,100 448 - 4,000 448 34,800 540 Agriculture Industry 2014)

Water deficit index (WDI) in Mongolia

(Wang, 2014)

- Alexander, K. and J. West (2011) Water. In: H. Schandl (eds.) *Resource efficiency: Economics and outlook for Asia and Pacific*. Bangkok, United Nations Environmental Programme, 85-102.
- FAO (2014) AQUASTAT database, Food and Agriculture Organization of the United Nations, http://www.fao.org/nr/water/aquastat/main/index.stm
- Gleick, P.H. (1994) Water and Energy. Annual Review of Energy and the Environment, 19, 267-299.
- MWR (Ministry of Water Resources) (2008) China water resource bulletin 2007. Ministry of Water Resources, Beijing.
- NSOM (National Statistical Office of Mongolia) (2011) Mongolian Statistical Yearbook 2010. National Statistical Office of Mongolia, Ulaanbatar.
- NSOM (National Statistical Ofiice of Mongolia) (2013) Monthly bulletin of statistics (December 2013). National Statistical Ofiice of Mongolia, Ulaanbaatar.
- Okadera, T., J. Chontanawat and S.H. Gheewala (2014) Water footprint for energy production and supply in Thailand. *Energy*, 77, 49-56.
- Rio Carrillo, A.M. and C. Frei (2009) Water: a key resource in energy production. *Energy Policy*, 37, 4303-4312.
- Sovacool, B.K. and K.E. Sovacool (2009) Preventing national electricity-water crisis areas in the United States. *Columbia Journal of Environmental Law*, 34, 333-393.
- Wang Q. (2014), Asia Pacific Adaptation Network Conference 2014, 1-3 October 2014, Kuala Lumpur, Malaysia,
- Wu, T., Q. Wang, M. and Watanabe, J. Chen and D. Battogtokh (2012a) Mapping vertical profile of discontinuous permafrost with ground penetrating radar at Nalaikh depression, Mongolia. *Environmental Geology*, 56, 1577-1583.
- Wu, T., Q. Wang, L. Zhao, E. Du, W. Wang, O. Batkhishig, D. Battogtokh and M. Watanabe (2012b) Investigating internal structure of permafrost using conventional methods and ground-penetrating radar at Honhor basin, Mongolia. *Environmental earth sciences*, 67, 1869-1876.
- Wu, T., L. Zhao, R. Li, Q. Wang, C. Xie and Q. Pang (2013) Recent ground surface warming and its effects on permafrost on the central Qinghai-Tibet Plateau. *International Journal of Climatology*, 33, 920-930.

Тhank you for your attention. Анхаарал тавьсан та бүхэнд баярлалаа ご清聴ありがとうございました。

Contact okadera@nies.go.jp